Dya package documentation
package version: v1.0

document version: v1.4.1
Author: Zalán Szakolczi and members of the TexTrend team
© TexTrend Project, 2009. 09. 0.5
www.textrend.org

1. Introduction

Recently many important programming tools have been developed to facilitate network analysis, but few of these programming tools take into account the dynamic behavior of the network. The R package iGraph is a useful collection to do analysis of a graph in the statical sense.

We are developing a new R package, Dya, which allows the user to perform analysis on a series of graphs, thus focusing on the dynamic trends of the networks. We use three approaches of these dynamic trends.
1 - Global level analysis,
2 - Local level analysis, and
3 - Analysis of network clusters.
In the global level approach (1) we are trying to find the answers to such questions, as "How does the average path length of the network change?". So we are focusing on the whole graph. In the local level approach (2), we are looking at the local nodes of the networks, or some selected local nodes. As a graph may have many vertices, often we are focusing on just some 'relevant' local nodes. For these importance measures we currently use the iGraph centrality calculation functions (although other local measures are possible). Also we do stability tests of the neighborhood of relevant nodes. In the cluster level approach (3) we are trying to visualize the evolution of the network clusters. We are trying to find out if a cluster at a given time has developed from another cluster in the previous slice of time.
The functions of the package Dya were prepared to visualize the dynamic network trends. To help expressive visualization the functions make diagrams. In the package we also provide functions for building dynamic networks from CSV files.

2. Environment

To use the package you need the R environment, available at http://www.r-project.org. After downloading, install the program, and open the RGui. All commands below are R commands that can be executed from the RGui. Make sure the iGraph library is present and Dya is loaded.
You can read in a series of graphs from file and then on this graph series you can run the functions of the package. In order to use the input files and save the diagrams you need to set the working directory. You can do this with the following:

setwd(<path>)

Where the <path> argument is the path of the directory, where you want to store your data. Now let's see the methods to analyze dynamic trends in the package.

3. Methods for reading a graph series from file

First, we need to read graphs from a well-specified file in order to use the functions. The functions of the package use CSV files, but we will extend it with other file formats. A CSV (Comma Separated Values) file format refers to a file, which includes values, separated by comma. One can imagine it as a set of table-ordered values, and the file may have a header.

We provide two functions for reading files.
1,) The one you can use when you have the following format of data:

vertex1;vertex2;weight;year;

In this case vertex1 and vertex2 refers to two nodes, which have link to each other, weight is the strength of the connectivity between the two vertices, and year is the appearing time.
2,) In the other case, you have the following format of data:

record;term;year

This is useful in a particular area of network research, concept networks. This is useful, when we have many concepts which appear in different articles and different years. We'd like to find out, which concepts appear in the same article in the same year many times. These concepts will be connected in the concept network, and the strength of the connection will be the frequency of the appearance in question. The record field refers to the identifier of the article, the term is the concept in the article, year is the time slice. Let's see these two functions.
1,) The first function is

read.dynamic.graphs(fileName,years,sep=";")

This function reads a CSV file presented above, and returns a list of graphs. Here is an example:

graphList <- read.dynamic.graphs("myFile.csv",2002:2008)

Here we assume that there is a file called myFile.csv in the working directory. The term 2002:2008 means, that we want to examine just the 2002-2008 time period. The input file, myFile.csv has to look something like this below:

vertex1;vertex2;weight;year

pig;cow;13;1998

cow;elaphant;24;1998

snake;elephant;23;1998

snake;bear;14;1998

bear;horse;53;1998

cow;elephant;1;1998

pig;horse;4;1999

horse;lion;23;1999

lion;rabbit;21;1999
After typing in the above read command, an R object will be created. This R object will contain the list of graphs returned by the function. In the above example, this object is the graphList. The '<-' mark in R lingo means "Put the result of the function into the given variable".
2,) The second function is
build.metric.graphs(fileName,years,sep=";")

This function can build a concept network as described above. The function reads a CSV file with the format (record;term;year). The record field contains the identifier of the article, the term field refers to the concept, and year is the time when the given concept appears in the given article. The function returns a list of graphs, as the following example shows:

graphList <- build.metric.graphs("myFileOfContents.csv",2005:2008)

Presuming, we have a file named myFileOfContents.csv in the working directory.

An example from the CSV file is presented bellow.

426;college student;2005

426;ego ideal;2005

426;intentionality;2005

426;superego;2005

426;tyranny of the should;2005

429;action;2005

429;basal ganglia;2005

429;behavioral measurement;2005

429;intention;2005

429;task switching;2005

430;consciousness;2005

430;intentionality;2005

430;prediction;2005

430;psychotherapy;2005

430;reward;2005

435;imitation recognition;2005

Now we have the list of graphs, and would like to see the dynamic behavior of our network. We will go along the groups of the analyzing methods.

4. Analyzing the network at the global level

Let's start the analysis with the global level functions. These are the most common statistics of a graph. The functions in the package provide solution to the following statistics:

1. Change in the number of nodes of a network over time
2. Change in the number of edges of a network over time

3. Alteration of the degree distribution of a network in time

4. Alteration of the diameter of a network in time
5. Changing trends in the average path length of a network in time
6. Changes in the number of cliques of a network in time
7. Analyze group cohesion of a graph over the time
8. Analyze the density of a graph in time.
These functions expect a list of graphs - typically resulting from the reader functions - , and the years to be examined (the trend parameter) as input. If the user doesn't add the trend parameter, then every graph component of the list will be taken into account. We have two kinds of methods. The one can return the result as an R list (to be processed further), and the other can plot the result in a diagram and put it into the working directory.
4.1. Dynamics of node numbers

To get the node numbers in the different years, call the function below:

vertex.numbers.time(graphs,years)
As mentioned above, in the graphs parameter we have to specify the list of graphs. As an example, using our previously read in graph series:
vertex.numbers.time(graphList,c(1997,1999,2001))

In this sample we are interested in the years of 1997,1999 and 2001. In R we can create a vector with the concatenation function (c). As a result we will get a list of numbers, the number of vertices in each year. Now, let's go ahead to the plot variation of this function. Type in the following:
plot.vertex.numbers.time(graphList,c(1997,1999,2001))

This command will plot the number of nodes in a diagram.

4.2. Dynamics of the number of edges
Now, we want to get the number of edges in each year. For this, use the following function:

edge.numbers.time(graphs,years)

or, if we want to plot the results:

plot.edge.numbers.time(graphs,years).

Let's see an example for the plotting result. We have our series of graphs, graphList, so typing to the command line
plot.edge.numbers.time(graphList,1993:2008)

will result in the following figure:

[image: image1.png]edge numbers

8002

200z

900z

500z

ooz

€00z

o0z

100z

000z

6661

8661

1661

9661

5661

[

e661

4.3. Degree distribution in time

The next task is to get the degree distribution of the network in each year, and to plot it. We do this with the following function:
plot.degree.dist.time(graphList,2001:2004)

This function will create as many diagrams, as many years we added in the years parameter. Each diagram will contain the degree distribution of one graph. A possible result is presented bellow.

[image: image2.png]

The first column of the diagrams refers to the number of vertices with 0 neighbors, the second, with 1 neighbors, and so on, the n-th column refers to the number of nodes which have n-1 neighbors.

4.4 Diameter of the network

Now we want to get the diameter of the graph in each year. The diameter of a graph is the length of the longest geodesic. Call the respective function bellow, to calculate this for each year and / or plot it.
graph.diameter.time(graphList,1993:2008)

or

plot.graph.diameter.time(graphList,1993:2008)

The plotting result can be found bellow.

[image: image3.png]graph diameters.

8002

200z

900z

500z

ooz

€00z

o0z

100z

000z

6661

8661

1661

9661

5661

[

e661

4.5. Average path length
We want to calculate the average path length in each year. Call the following functions to do this:

average.path.lengths.time(graphs,years=NULL) or plot.average.path.lengths.time(graphs,years=NULL)

4.6. Clique numbers

Now let's calculate the number of cliques in each year. A clique is a complete subgraph in the graph. Let's use the functions bellow.

clique.numbers.time(graphs,years=NULL)or
plot.clique.numbers.time(graphs,years=NULL)

4.7. Graph Cohesion

Let's see a function which can calculate the graph cohesion in each year:
graph.cohesion.time(graphs,years=NULL) or plot.graph.cohesion.time(graphs,years=NULL)

The graph cohesion is the minimum number of vertices needed to remove to make the graph not strongly connected. (If the graph is not strongly connected, then this number is zero.)
4.8 Graph density

The density of a graph is the ratio of the number of edges and the number of possible edges. If we want to calculate the graph density for each year, we have to call one of the following functions:

graph.density.time(graphs,years=NULL) or plot.graph.density.time(graphs,years=NULL)
Now, let's move on to the local analysis.

5. Local level analysis of the networks

As we mentioned before, in Dya v1.0 we study just some selected nodes, namely, those which are characterized with high centrality scores. Centrality score is a specific value to estimate the relative node “importance” within the network. Many centrality measures exist, and these are calculated differently. The centrality measures we apply are listed below:
1. Betweenness centrality
2. Closeness centrality
3. Eigenvector centrality
4. Kleinberg centrality
5. Page rank scores

We use the respective iGraph functions to calculate these scores, and then we select the nodes with the highest scores. We aspire to express the dynamics of these nodes and to plot the result. Now we will go through the different centrality measures and we will present the functions, which calculate the dynamics of the chosen nodes.
5.1. Betweenness centrality

This is a very popular centrality measure and defined by the number of shortest paths going through a vertex. For a graph G: = (V,E) with n vertices, the betweenness CB(v) for vertex v is:
[image: image4.png]Ist(v)

Op(v) =

spviev
b

where σst is the number of shortest paths from s to t, and σst(v) is the number of shortest paths from s to t that pass through a vertex v.

First, we want to calculate the highest betweenness scores for every moment. The following function can do this:
vertex.betweenness.statistics(graphs,years)
This function expects two parameters. The first argument is the list of graphs, typically the graph series, which are resulted by the reading functions. The second argument is the list of years we are interested in. The function returns an R data.frame object. The data frame can store data in a table with headers. In the returning object the header contains the years, the first column contains the names of nodes, the remaining columns contain the betweenness scores of the given vertex in the given year.

Our next aim is to plot the biggest centrality scores. We want to see, which nodes have high centrality scores in more than one year. Use the following functions to do this:

plot.betweenness.statistics(graphs,years)

The input parameters are the same as in the case of the last function. As a result, we will get diagrams. Figure 2. shows an example with the nodes with higher betweenness centrality scores in the dynamic sense. Results are color-coded. The green color means that the given node is “new” in the plot, that is, in the given year it has a high centrality value for the first time (newly important node). Other colors each refer to a specific year; namely the year in which we detect a high centrality value for the given node for the first time.

For an example, let's call the function for the graph list we built:

plot.betweenness.statistics(graphList,1993:2008)
[image: image5.png]i

ooEEmEOEEEED

Figure 2. The centrality dynamics

Now, we’d like to identify those nodes, which are the most important in the whole studied interval of network dynamics (so far we have considered only snapshots.) Then we relate them to each other.

We assign a value to every node to express the dynamic weight of the centrality scores of the given node. This value is calculated as the sum of the centrality scores of the node in the different years, weighted by the age of the node. (The age of the node is the number of consecutive years in which it has high centrality values.) Then we select the “winner node” – the node with the biggest dynamic centrality weight. Next we discard nodes which have lower weights, up to a threshold. The remaining nodes are the highest centrality nodes which are relatively permanent. Hereafter we will call these nodes “the central dynamic nodes” (CDN).

If we want to get the CDN -s, we call the following function:
Betweenness.cdn.statistics(graphs,years=NULL,th=5)

This method will return a data frame. The first column contains the node names, the second column refers to the first year, in that the node appears as a node with high centrality score, the third contains, how long the node has high centrality score, the fourth is a cumulated value for the centrality scores. The table resembles the example in figure 3.

content year age weight

1 consciousness 1993 9 29562.5357

2 theory of mind 1993 9 47318.5000

3 phenomenology 1995 9 41700.5000

4 representation 1995 7 24816.2500

The environment of the central nodes

We also want to analyze the dynamics of the neighbors of a given central node. How often the neighbors change, which ones the neighbors, that there were in the environment of the mentioned node in more than one year, and how much the strength of the links changes between the neighbors. We'd like to express these analytics.
We now select those nodes, which were connected to a CDN in more than one year (or more than two years, etc. depending on a selected threshold). These nodes signify the relatively permanent neighbors of a given individual CDN. We compute and visualize these neighbors for each CDN, and in the diagrams we also express the dynamic trends of the link strengths.
The function, which can do these analytics for the betweenness centrality is the following. To plot diagrams about the analytics of the high-centrality nodes, call the following function:

plot.betweenness.stability(graphs,years=NULL,th=5)

This function will produce several pictures. In the first picture, you can see a graph. Those nodes will appear in the graph, which have high centrality values in the longest term and have connections between each other in more time slice. This is the CDN graph. The CDN graph can be said to express a dynamic centrality skeleton of the network.

In the first diagram, the width of each column shows the number of years in which the listed neighbor nodes stay connected to the given CDN. The color of the column refers to the average strength of connectivity (AVC). In the diagram the neighbors are ordered by their AVC. Colors are going through the spectrum, from yellow to the red, deeper colors meaning higher values. Links with small AVC values are yellow, while high AVC values are dark red.

In the second diagram, as before, the widths of the columns are again the number of years in which a neighbor has a connection to the CDN. Here, however, the color of the columns represents the average magnitude of fluctuations (AVF) of the link strength between the consecutive time slices. The AVF values are also ordered in a decreasing fashion. We use the same spectrum to express AVF as AVC.

In the third diagram, the widths of the columns are AVF values and the colors express the monotonity of the yearly fluctuation of the link strengths. If the strength of the links tends to become smaller, the color of the column is blue (meaning decreasing link strength). If the connectivity strength grows during the years, the color of the column gets the color tomato (meaning an increasing link strength). Finally, if the strength of the links fluctuate during the selected years, the column is colored green.

Finally, the function will print three different diagrams, which represent three different stability measures. These measures will be discussed in the following function.
The parameters of the function are the follows. The graphs parameter is the list of iGraph objects. The years argument is the list of the time slices we want to study. The th parameter is a threshold to filter the CDN-s. The larger this value is, the more nodes will be marked as CDN-s.

Let's see an example - call the above functions with our network series.

plot.betweenness.stability(graphList)
The sample figures, given by the function presented below.

[image: image6.png]

Graph of the CDN -s
	[image: image7.png]sl copiton
soial nderstnding
imiaion

griive development
foint tteation
iution

empathy

infancy

autsm

socil copiton
socileaming
[—
colboraton
spistemclogy
children

‘perception
fnctionalism
cuure

animacy

intention

‘mentalizing

theory of mind

ODOOEEENNEEEEEEEEEEEE

015

0.666666666666667

0.666666666666667

0.666666666666667

0625

0625

0625

05

0.466666666666667

0.433333333333333

0:41666666666667

0.416666666666667

0:41666666666667

0375

0375

0321428571428571
29166666666667
25

025

025

02

	[image: image8.png]theory of mind

=07
ot aenion [=03
o
m 0.666666666666667
opes | B s
03
st ondesandios [= 03
—
gniive development W 0357142857142857
ey W
035
mimat oicion. [5 oam
S B =
B 0.166666666666667
— £ i
B 0.166666666666667
oy |] B oo
wioe] 5 05
@ 005
——
ttewming [] 20
ceaming []
cotssoicn |
wee []
Sonctonalsm
snimacy
ntenton
mentaizing
nfincy

04
1
24
54
Pl

	[image: image9.png]i

1r

Dynamics of the neighborhood of a CDN

	[image: image10.png]200 4

n;
50
100
150

	[image: image11.png]intention

stability of the vertices with the bigges betweenness centrality

007 4

000
001
002
003
004
005

006 o

	[image: image12.png]intention

000
001
002
003 -

Now we calculate the stability measures for the CDN-s. We consider a CDN highly stable if its neighbors stay approximately the same over the years, and the sum of the AVF values between the neighbors are not too big (meaning that the variation in the neighbors’ connection is not very high). The functions can calculate three different measures, as different demands may require.

· M1 Under this (time global) measure, a high stability value means that neighbors are unchanged or recur, and not in the consecutive time slices, but in any two moments. This measure is calculated as the sum of the frequency of occurrence of those CDN neighbors which appear in more than one year in the environment of the CDN, divided by the average value of fluctuation (AVF) of the link strengths between each other.

· M2 In this (time local) measure we consider a central node stable if its neighbors are identical in two consecutive years. We define this measure as the Jaccard-distance of the set of neighbors in the two consecutive years.

· M3 In this measure we divide M2 by the sum of the fluctuation value of link strengths in each year.

Now, let's see the function, which just returns these three vectors of stability values. This function is the following:
cdn.betweenness.stability(graphs,years=NULL,th=5)

The parameters are the same as in the plotting function discussed above. The function we discuss now will return three R vectors, which contain the stability values for each CDN -s.
5.2 Closeness centrality

The next centrality measure to consider is the closeness centrality. It expresses how many steps are required to access every other vertex from a given vertex. It is defined as the mean geodesic distance (i.e., the shortest path) between a vertex v and all other vertices reachable from it:
[image: image13.png]

here n is the size of the network's 'connectivity component' V reachable from v.
We have all kind of functions available for the closeness centrality which we presented at the betweenness centrality in the previous section.

If we want to get the closeness-centrality values of the vertices for every moment, let’s call the following function:

vertex.closeness.statistics(graphs, years=NULL)

The function returns a table which gives the closeness values in each year.

The following function will plot the closeness values. The format is the same as in the case of betweenness centrality.

plot.closeness.statistics(graphs,years=NULL)

If we want to get the CDN –s for the closeness centrality, we call the function bellow.
closeness.cdn.statistics(graphs,years=NULL,th=3)

The returning value is the same as the other centrality functions.

Of course we can run the stability analyzing functions to the closeness values as well:

cdn.closeness.stability(graphs,years=NULL,th=3)

plot.closeness.stability(graphs,years=NULL,th=3)

 The parameters and returning values of these functions are the same as in the case of betweenness measure discussed above.
Hereafter we will present the remaining centrality measures and we will list the functions related to it. The characteristics of these functions are the same as in the case of the other centrality measures, therefore we won’t explain details.

5.3 Eigenvector centrality

 For the ith node, let the eigenvector centrality score be proportional to the sum of the scores of all nodes which are connected to it. Hence

[image: image14.png]LI SR

X S

where M(i) is the set of nodes that are connected to the ith node, N is the total number of nodes and λ is a constant. In vector notation this can be rewritten as

[image: image15.png]

, or as the eigenvector equation [image: image16.png]

In general, there will be many different eigenvalues λ for which an eigenvector solution exists. However, the additional requirement that all the entries in the eigenvector be positive implies (by the Perron–Frobenius theorem) that only the greatest eigenvalue results in the desired centrality measure. The ith component of the related eigenvector then gives the centrality score of the ith node in the network.
The functions related to the Eigenvector centrality measures are:

To get the centrality scores for every moment:

eigen.vector.statistics(graphs,years=NULL)

To plot the dynamic characteristics of the centrality scores:

plot.evcent.statistics(graphs,years=NULL)
To get the CDN-s:

evcent.cdn.statistics(graphs,years=NULL,th=3)

To get the 3 stability measures for each CDN-s:

Cdn.evcent.stability(graphs,years=NULL,th=3)

To plot the dynamics of the neighbors of the CDN –s:
Plot.evcent.stability(graphs,years=NULL,th=3)
5.4 Kleinberg centrality

To get the Kleinberg centrality scores in every moment:

kleinberg.statistics(graphs,years=NULL)

To plot the dynamic characteristics of the centrality scores:

plot.kleinberg.statistics(graphs,years=NULL)

To get the CDN-s:

kleinberg.cdn.statistics(graphs,years=NULL,th=3)

To get the 3 stability measures for each CDN-s:

cdn.kleinberg.stability(graphs,years=NULL,th=3)

To plot the dynamics of the neighbors of the CDN –s:

plot.kleinberg.stability(graphs,years=NULL,th=3)

5.5 Page rank scores

To get the page rank centrality scores in every moment:

page.rank.statistics(graphs,years=NULL)

To plot the dynamic characteristics of the centrality scores:

plot.page.rank.statistics(graphs,years=NULL)

To get the CDN-s:

page.rank.cdn.statistics(graphs,years=NULL,th=3)

To get the 3 stability measures for each CDN-s:

cdn.page.rank.stability(graphs,years=NULL,th=3)

To plot the dynamics of the neighbors of the CDN –s:

plot.page.rank.stability(graphs,years=NULL,th=3)

There is another way to call these functions. If you don’t want to specify the centrality measure, you can call a more general function. In the parameter list you can specify the centrality measure if it’s important, if not, then the betweenness centrality will be used as default. The generalizations of the above discussed functions are:
vertex.centrality.statistics(graphs,years=NULL,
method=”betweenness”)

plot.centrality.statistics(graphs,years=NULL,
method=”betweenness”)

cdn.statistics(graphs,years=NULL,th=5,method=”betweenness”)

cdn.stability(graphs,years=NULL,th=5,method=”betweenness”)

plot.cdn.stability(graphs,years=NULL,th=5,method=”betweenness”)

In the method parameter you can add the centrality measure. You can use one of the following strings: „betweenness”, „closeness”, „eigenvector”, „kleinberg”, „pagerank”.

6. Cluster level analysis

Finally, it will be very useful to separate network communities and analyze them dynamically. This is work-in-progress but we show it nevertheless. The functions of the package use different clustering methods to start with:

· Walktrap clustering

· Eigenvector clustering

· Betweenness clustering

· Fastgreedy clustering

· Label propagation clustering

Our aim is now to express the evolution of the resulting communities.

The main function divides the clusters of a given time slice into different subsets, according to which cluster evolved from which one in an earlier slice. (The visualization of the cluster evolution as well as the statistical analysis is still under development.)
If we want to divide the clusters, we call the following function:

modules.evolution.statistics(graphs, years,method=”walktrap”,threshold=0.1)

In the graphs parameter we have to add the list of iGraph objects as we’ve done it every time. The years parameter is the list of the trend parameters.
In the method parameter we can specify the clustering algorithm. We can use one of the following strings: “walkrap”, “eigenvector”, “betweenness”, “fastgreedy”, “propagation”. The ‘threshold’ parameter is the threshold to determine the similarity of any two clusters. The algorithm uses the Jaccard-distance to determine the similarity, and the threshold gives the minimum value to the Jaccard distance to consider two clusters similar.

The returning values of the function are two data frames. In the first frame the header of the frame is ‘node,year,comm’. Each row contains the following data: The node column contains the vertices of the network; in the ‘year’ column there are the values of the trend parameters; the ‘comm’ contains the identifier of the communities. We can see in this frame, which nodes belongs to which clusters in the given time slice.

In the second frame the header of the frame is: mName,mod,year,size,age.
We identify the name of the cluster with the identifier of the node, which have the highest centrality score within the cluster. The mName column contains this identifier. The mod column is the identifier number of the community. The ’year’ is the value of the trend parameter in which the community was separated. The size is the number of vertices within the cluster. The age is the number of years in which the community occurred with the same identifier.
Let’s try an example and call the function with the following parameters:

modules.evolution.statistics(graphList,1993:2008)
So, we used the default algorithm, the walktrap clustering, and the default threshold parameter. Figure 5. presents a part of the result.

	 mName
mod year size age

	1 cognitive development 0 1993 11 1

	2 consciousness 1 1993 25 1

	3 functionalism 2 1993 8 1

	4 literary system author 3 1993 3 1

	5 causal explanation 4 1993 3 1

	6 cognition 5 1993 3 1

	7 connections philosophy and psychiatry 6 1993 7 1

One of our future goals is to plot an evolution tree for the network clusters. We say that a community evolves from another if the new community contains the identifier node of the old. We can use color-coding for lineages: if a community is evolved from another in a given time slice then the color of these communities will be the same and there will be an edge from the older community to the newer.

We also want to express some statistics of the communities in the results; such as the number of nodes within the cluster, the ages of the cluster, etc. Also for visualization, if there are two communities, and the one has 10, the other has 100 nodes then the size of the first community plotted in the result should be smaller than the size of the second, etc. However, the visualization of the cluster evolution as well as the statistical analysis is still under development.
